Innovation for Our Energy Future

Renewable Energy Opportunities & Challenges

Computational Research Needs for Alternative and Renewable Energy Workshop

September 19, 2007

Dr. Dan E. Arvizu

Director, National Renewable Energy Laboratory

The Key Question

Are energy efficiency and renewable energy technologies poised to have a significant impact?

U.S. Energy Consumption and the Role of Renewable Energy

Source: Energy Information Administration, Annual Energy Outlook 2006, Table D4

What Are the Major Renewables?

Electricity Net Generation – 2006

U.S. Renewable Energy Contributions

Percent of Total Electric Generating Capacity

We Are Now Setting Aspirational National Goals – Setting the Bar Higher

U.S. national goals

- Biofuels: reduce gasoline usage by 20% in ten years
- Wind: 20% of total provided energy by 2030
- Solar: Be market competitive by 2015 for PV and 2020 for CSP

Getting to "Significance" Involves...

Source: NREL

Global Markets are Growing Rapidly

Money Is Flowing Into the Sector

2006 Investment and M&A - By Sector and Asset Class

Annual VC Investment Volume – 2001-2004 Compared With 2005-2006

State Policy FrameworkRenewable Electricity Standards

Source: DSIRE database, July 2007

Past Investments Have Yielded Impressive Cost Reductions

Technology Options Are Evolving

Wind

Today's Status in U.S.

- 11,603 MW installed at end of 2006
- Cost 6-9¢/kWh at good wind sites*

DOE Cost Goals

- 3.6¢/kWh, onshore at low wind sites by 2012
- 7¢/kWh, offshore in shallow water by 2014

Long Term Potential

20% of the nation's electricity supply

NREL Research Thrusts

- Improved turbine performance and reliability
- Distributed wind technology
- Drivetrain reliability
- Utility grid integration

Installed Wind Capacity

Solar

Photovoltaics and Concentrating Solar Power

Status in U.S.

PV

- 565 MW
- Cost 18-23¢/kWh

CSP

- 420 MW
- Cost 12¢/kWh

Potential:

PV

- 11-18¢/kWh by 2010
- 5-10 ¢/kWh by 2015

CSP

8.5¢/kWh by 2010 5-7¢/kWh by 2020

Source: U.S. Department of Energy, IEA, Solar Energy Technologies Program Multi-Year Plan 2007

Thrusts:

PV

- Partnering with industry
- Higher efficiency devices
- New nanomaterials applications
- Advanced manufacturing techniques

CSP

- Next generation solar collectors
- High performance storage National Renewable Energy Laboratory

. ...:::iiiii

Biopower

Biopower status

- 2006 Capacity 10.5 GWe
 - 5 GW Pulp and Paper
 - 2 GW Dedicated Biomass
 - 3 GW MSW and Landfill Gas
 - 0.5 GW Cofiring
- 2004 Generation 68.5 TWh
- Cost 0.08 0.10 USD/kWh

Potential

- Cost 0.04-0.06 USD kWh (integrated gasification combined cycle)
- 2030 160 TWh (net electricity exported to grid from integrated 60 billion gal/yr biorefinery industry)

Biofuels

Current Biofuels status

- Biodiesel 1.3 billion gallons/yr capacity¹
- Corn ethanol
 - 121 commercial plants²
 - 6.3 billion gal/yr. capacity²
 - Additional 6.2 billion gal/yr planned or under construction
- Cellulosic ethanol (current technology)
 - Projected commercial cost ~\$3.50/gge

Key DOE Goals

- 2012 goal: cellulosic ethanol ~\$1.62/gge
- 2017 goal: 35 billion gal alternative fuel President
- 2022 goal: 36 billion gal renewable fuel Congress/draft
- 2030 goal: 60 billion gal ethanol (30% of 2004 gasoline)

NREL Research Thrusts

- The biorefinery and cellulosic ethanol
- Solutions to under-utilized waste residues
- Energy crops

From DOE GTL Bioenergy Roadmap

Systems Biology to Overcoming Barriers to Cellulosic Ethanol

Feedstock Engineering

- Increase crop production (agronomics and plant engineering)
- Increase
 composition of
 desirable
 polysaccharides
 (cellulose)
- Decrease composition of undesirable polymers (lignins)

NREL "Corn Stem Tour"

Technology Innovation Challenges Remain

The Next Generation

- Wind Turbines
 - Improve energy capture by 30%
 - Decrease costs by 25%
- Biofuels
 - New feedstocks
 - Integrated biorefineries
- Solar Systems
 - Improved performance through, new materials, lower cost manufacturing processes, concentration
 - Nanostructures
- Zero Energy Buildings
 - Building systems integration
 - Computerized building energy optimization tools

Achieving the Right Balance: Technology Investment Pathways

Source: NREL 2007

REL National Renewable Energy Laboratory

Renewable Energy's Role is Significant... Key Features:

- Innovation through interdisciplinary research
- Managing for accelerated impact
- Integrated systems ready for competitive markets
- Make computational research an indispensable partner with theory and experiment to enable study of highly complex systems

It's about scale and speed....

The U.S. Department of Energy's National Renewable Energy Laboratory

